CHANGING SUBJECT OF A FORMULA

Pearson Edexcel - Tuesday 19 May 2020 - Paper 1 (Non-Calculator) Foundation Tier

1.

30 (a)	$q = \frac{p-7}{6}$	M1	for a correct first step, showing a method of subtraction of 7 from both sides or division of all terms by 6 eg $p-7=6q+7-7$ or $\frac{p}{6}=\frac{6q}{6}+\frac{7}{6}$ oe	
		A1	for $q = \frac{p-7}{6}$ or $q = \frac{p}{6} - \frac{7}{6}$	Allow $1\frac{1}{6}$ for $\frac{7}{6}$ Award for answer without " $q=$ "
(b)	m^6	B1	cao	

Pearson Edexcel - Tuesday 11 June 2019 - Paper 3 (Calculator) Foundation Tier

2.

۷.				
	19	$x = \frac{y - 4}{2}$	for correct first step to rearrange eg $y-4=2x+4-4$ or $\frac{y}{2} = \frac{2x+4}{2}$ or ambiguously shown eg $x=y-4+2$ or answer given as $\frac{y-4}{2}$ oe	May be seen in different equivalent forms but must be carried out, not just intention seen. Could be shown as a flow diagram but must have correct inverse operations

Pearson Edexcel - Tuesday 6 November 2018 - Paper 1 (Non-Calculator) Foundation Tier

3.

21	(a)	6 or –6	M1	for $12^2 + 2 \times -3 \times 18 (= 36)$	Terms may be partially evaluated.
			A1	for 6 or -6, accept ±6	Only one value is required for full marks
$s = \frac{v^2 - u^2}{2a} \qquad M1$		M1	for subtracting u^2 from both sides or dividing all terms by $2a$ as the first step	Must see this step carried out, not just the intention shown	
Al		A1	$s = \frac{v^2 - u^2}{2a} \text{ oe}$		

Pearson Edexcel - Tuesday 12 June 2018 - Paper 3 (Calculator) Foundation Tier

4.

28	$g = 2T^2 - 6$	MI	for $T^2 = \frac{g+6}{2}$ or $\sqrt{2} \times T = \sqrt{g+6}$	
		M1	(dep) for $T^2 \times 2 = g + 6$ or $(\sqrt{2} \times T)^2 = g + 6$ oe	Can only award this mark if the first M mark has been awarded.
		A1	for $g = 2T^2 - 6$ oe	

Pearson Edexcel – Specimen 2 - Paper 3 (Calculator) Foundation Tier

24	t = 3(y + 2a)	M1	adding 2a to both sides or multiplying each term
			by 3
		A1	t = 3(y + 2a) or $t = 3y + 6a$

Pearson Edexcel – Specimen 1 - Paper 2 (Calculator) Foundation Tier

6.

20	$t = \frac{w - 11}{3}$	M1	for $3t = w - 11$ or $\frac{w}{3} = \frac{3t}{3} + \frac{11}{3}$
		A1	for $t = \frac{w-11}{3}$ oe

OCR Thursday 8 November 2018 – Morning (Non-Calculator) Foundation Tier

7.

9	(a)	x = y + 2	1	Condone $y + 2 = x$
	(b)	$d = \frac{C}{\pi} \text{ or } d = C \div \pi$	1	Condone $\frac{C}{\pi} = d$ or $C \div \pi = d$

Pearson Edexcel –Sample Papers - Paper 2 (Calculator) Foundation Tier

8.

21	p=qr-sr	M1	for multiplying all 3 terms by r or isolating p/r term
		A1	oe

OCR Thursday 8 June 2017 – Morning (Non - Calculator) Foundation Tier

17	(a)		$\frac{y+3}{7}$ or $\frac{-y-3}{-7}$ final answer	2	M1 for $y + 3 = 7x$ or $\frac{y}{7} = x - \frac{3}{7}$ Or for correct FT completion to answer after incorrect first step has been shown	For M1, accept the 'negative terms' versions
	(b)	(i)	x(x-y) final answer	1		Condone omission of final bracket Condone $[1]x([1]x - [1]y)$
		(ii)	(x + 6)(x + 2) final answer	2	M1 for $(x + a)(x + b)$ where $ab = \pm 12$ or $a + b = \pm 8$ or for $x(x + 6) + 2(x + 6)$ seen or $x(x + 2) + 6(x + 2)$ seen	a, b integers For 2 marks, condone solutions after correct factors For 2 marks or M1, condone omission of final bracket

AQA Tuesday 19 May 2020 – Morning (Non-Calculator) Foundation Tier

10.

Q	Answer	Mark	Comments			
	Alternative method 1					
	3c = d + 2 or $3c - 2$	M1				
	d = 3c - 2 or $d = -2 + 3cor 3c - 2 = d or -2 + 3c = d$	A1				
	Alternative method 2					
28	$c - \frac{2}{3} = \frac{d}{3}$ or $3\left(c - \frac{2}{3}\right)$	M1				
	$d = 3\left(c - \frac{2}{3}\right)$	A1				
	Additional Guidance					
	Flow chart method, with incorrect fina					
	$d \rightarrow +2 \rightarrow \div 3 \rightarrow c$ and $c \rightarrow \times 3 \rightarrow -2 \rightarrow d$					
	Condone × signs for M1 but not A1					
	Condone c3 for M1 but not A1					

AQA Tuesday 21 May 2019 – Morning (Non-Calculator) Foundation Tier

	Alternative method 1 – add 6 to both sides first							
	x + 6 = 2y or $-x - 6 = -2y$ or $\frac{x+6}{2}$ or $\frac{x}{2} + 3$ or $\frac{1}{2}(x+6)$	M1	oe					
	$y = \frac{x+6}{2}$ or $y = \frac{x}{2} + 3$ or $y = \frac{1}{2}(x+6)$	A1	allow order reversed do not allow further incom attempts to divide only the Condone $y = (x+6)+2$ f	e 6 by 2				
	Alternative method 2 – divide both	sides by	2 first					
	$\frac{x}{2} = y - \frac{6}{2}$ or $\frac{x}{2} = y - 3$ or $\frac{x+6}{2}$ or $\frac{x}{2} + 3$ or $\frac{1}{2}(x+6)$	M1	allow $\frac{2y}{2}$ for y					
27	$y = \frac{x+6}{2} \text{ or } y = \frac{x}{2} + 3$ or $y = \frac{1}{2}(x+6)$	A1	allow order reversed do not allow further inco attempts to divide only the Condone $y = (x+6)+2$	he 6 by 2				
	Alternative method 3 – flow diagram							
	$y \to 2y \to 2y - 6$ $\leftarrow x + 6 \leftarrow x$	M1	allow $2 \times y$ or $y \times 2$ for ignore any operations set					
	$y = \frac{x+6}{2}$ or $y = \frac{x}{2} + 3$ or $y = \frac{1}{2}(x+6)$	A1	allow order reversed do not allow further incorrect work eg attempts to divide only the 6 by 2 Condone $y = (x+6)+2$ for M1A1					
	Additional Guidance							
	Allow 0.5 for $\frac{1}{2}$ throughout							

AQA Tuesday 12 June 2018 – Morning (Calculator) Foundation Tier

12.

	$f = \frac{e}{2}$	B1			
21	Additional Guidance				

AQA Wednesday 8 November 2017 – Morning (Calculator) Foundation Tier

	Alternative method 1					
27a	v - u = at	-at = u - v	M1			
	$t = \frac{v - u}{a}$	$t = \frac{u - v}{-a}$	A1	oe		
	Alternative method 2					
	$\frac{v}{a} = \frac{u}{a} + t$		M1			
	$t = \frac{v}{a} - \frac{u}{a}$		A1	oe		
	Additional Guidance					
	$t = (v - u) \div a$	M1A1				
	v - u = at and $t = at$	M1A0				
	$\frac{v-u}{a}$ or $\frac{u-v}{-a}$ or	M1A0				
	$a = \frac{v - u}{t}$ with or v	M1A0				
	$t = v - u \div a$	M0A0				
	$t = \frac{v + u}{a}$	M0A0				

	(Speed) m/s or ms ⁻¹ (Acceleration) m/s ² or ms ⁻² or m/s/s	B2	B1 for one correct or two mutually consistent u and km/h ² Accept mps for m/s and mps			
	Additional Guidance					
27b	Allow units given in words eg metres per second metres per second squared or metre					
	m/s ⁻¹ (speed)	В0				
	m/s ⁻² (acceleration)			В0		

AQA Thursday 8 June 2017 – Morning (Calculator) Foundation Tier

28	$y-9 = \frac{x}{3}$ or 3y = x + 27 or 3y - 27 or 3(y-9)	M1	A correct first step in rearranging or the correct rearrangement without $x = \frac{1}{2} \sum_{i=1}^{n} x_i dx_i$			
	x = 3y - 27 or $x = 3(y - 9)$	A1	Accept $3y - 27 = x$ or $3(y - 9) = x$			
	Additional Guidance					
	Accept $-27 + 3y$ for $3y - 27$ through					
	x = 3y - 27 in working with answer 3y	M1A1				
	x = (y - 9)3 (unless recovers)	M1A0				
	x = y3 - 27 (unless recovers)	M1A0				
	Multiplication signs are acceptable for I	ot A1				
	$x = 3 \times y - 27$	M1A0				
	$3 \times y = x + 3 \times 9$	M1				